Cavernous Angioma 2019
A Scientific Summary

Amy Akers, PhD
Angioma Alliance
Chief Scientific Officer
Genetics of Cavernous Angioma

Sporadic and Inherited Forms
- Solitary vs multiple lesions

3 Genes for Cavernous Angioma
- *CCM1* (1999)
- *CCM3* (2005)

Determining the function of these gene products is a major focus of research related to drug development for both sporadic and familial CCM.
A year in basic research – published studies

- Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signaling pathways (Gamble group, November 2019)
- Long-term antithrombotic therapy and risk of intracranial hemorrhage from cerebral cavernous malformations: a populations-based cohort study, systematic review, and meta analysis (Flemming & Salman, October 2019)
- Blood flow vascular anomalies in a zebrafish model of cerebral cavernous malformations (Rodel et al, September 2019)
- Phenotypic evaluation of quantitative susceptibility and contrast-enhanced permeability MR sequences across patient data sets (Awad group September 2019)
- A Brain Targeted Orally Available ROCK2 inhibitor Benefits Mild and Aggressive Cavernous Angioma Disease (BioAxone August 2019)
- Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations (Awad Group, August 2019)
- Biomarkers of cavernous angioma with symptomatic hemorrhage (Awad group June 2019)
- Endothelial cell clonal expansion in the development of cerebral cavernous malformations (Dejana group, June 2019)
- Precise CCM1 gene correction and inactivation in patient-derived endothelial cells: Modeling Knudson's two hit hypothesis in vitro (Felbor group, May 2019)
- Systems-wide analysis reveals new roles of CCM signal complex (CSC) (Zhang Group, May 2019)
- A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis (Derry Group, April 2019)
- Postzygotic mosaic in cerebral cavernous malformation (Felbor group March 2019)
- Rho Kinase Inhibition Blunts Lesion Development and Hemorrhage in Aggressive Pdcd10/Ccm3 Disease (Awad & Marchuk, February 2019)
- Plasma Biomarkers of Cavernous Angioma with Symptomatic Hemorrhage (CASH) (Awad group January 2019)
- Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice (Lopez & Ginsberg, January 2019)
- Biallelic CCM3 mutations cause a clonogenic survival advantage and endothelial cell stiffening (Felbor & Rath, December 2018)
- Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (Atorva & Ponatinib in Mice, November 2018)
CCM Treatment Pipeline

<table>
<thead>
<tr>
<th>Pre-Clinical</th>
<th>Phase One</th>
<th>Phase Two</th>
<th>Phase Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHO KINASE INHIBITORS</td>
<td>Atorvastatin – Enrolling, University of Chicago</td>
<td>BA-1049</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lescol & Reclast</td>
<td></td>
</tr>
<tr>
<td>SUPEROXIDE DISMUTASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REC-994 (Tempol) - Ph1b 2020, Recursion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFLAMMATORY INHIBITORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulindac (Europe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-cell Depletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUTRITIONAL SUPPLEMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitamin D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETA BLOCKER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propranolol – Enrollment Complete, Multiple Italian Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIOME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gut Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGIOGENESIS INHIBITOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thrombospondin1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKK3-KLF INHIBITOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponatinib</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rho Kinase Inhibitors Target Cell Junctions

From Fischer et al, 2013. Trends in Molecular Medicine
Why study atorvastatin?

• Treated mice show fewer lesions and less bleeding
• Expect statin therapy to restore junctions and to see a decrease in QSM signal (iron on the brain)

(Awad, U Chicago)
Tempol/REC-994 restores the balance of reactive free oxygen species.
CCM Treatment Pipeline

Pre-Clinical	Phase One	Phase Two	Phase Three
RHO KINASE INHIBITORS
- Atorvastatin - Enrolling, University of Chicago
- BA-1049
- Lescol & Reclast
SUPEROXIDE DISMUTASE
- REC-994 (Tempol) - Ph1b 2020, Recursion
INFLAMMATORY INHIBITORS
- Sulindac (Europe)
- B-cell Depletion
NUTRITIONAL SUPPLEMENT
- Vitamin D3
BETA BLOCKER
- Propranolol - Enrollment Complete, Multiple Italian Sites
MICROBIOME
- Gut Bacteria
ANGIOGENESIS INHIBITOR
- Thrombospondin1
MEKK3-KLF INHIBITOR
- Ponatinib
B-cell depletion therapy reduces mature lesions

Awad 2016
CCM Treatment Pipeline

<table>
<thead>
<tr>
<th>Pre-Clinical</th>
<th>Phase One</th>
<th>Phase Two</th>
<th>Phase Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHO KINASE INHIBITORS</td>
<td>Atorvastatin – Enrolling, University of Chicago</td>
<td>BA-1049</td>
<td>Lescol & Reclast</td>
</tr>
<tr>
<td>SUPEROXIDE DISMUTASE</td>
<td>REC-994 (Tempol) - Ph1b 2020, Recursion</td>
<td>Sulindac (Europe)</td>
<td>B-cell Depletion</td>
</tr>
<tr>
<td>INFLAMMATORY INHIBITORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUTRITIONAL SUPPLEMENT</td>
<td>Vitamin D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETA BLOCKER</td>
<td>Propranolol – Enrollment Complete, Multiple Italian Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIOME</td>
<td>Gut Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGIOGENESIS INHIBITOR</td>
<td>Thrombospondin1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKK3-KLF INHIBITOR</td>
<td>Ponatinib</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior Therapeutic Use - Propranolol

- Case reports successful treatment
 - Child with giant infantile cavernous
 - Adult females (2) with symptomatic hemorrhage

Pre-Clinical	Phase One	Phase Two	Phase Three
RHO KINASE INHIBITORS
- Atorvastatin – Enrolling, University of Chicago
- BA-1049
- Lescol & Reclast

SUPEROXIDE DISMUTASE
- REC-994 (Tempol) - Ph1b 2020, Recursion

INFLAMMATORY INHIBITORS
- Sulindac (Europe)
- B-cell Depletion

NUTRITIONAL SUPPLEMENT
- Vitamin D3

BETA BLOCKER
- Propranolol - Enrollment Complete, Multiple Italian Sites

MICROBIOME
- Gut Bacteria

ANGIOGENESIS INHIBITOR
- Thrombospondin1

MEKK3-KLF INHIBITOR
- Ponatinib
Gut-Brain Axis & CCM Lesion Development

Bacteria Signals travel through blood stream

TLR4 Receives Signal

Stimulates MEKK3-KLF2/4 Signaling & Lesion Development

Drug Hypothesis: Change bacteria in gut, or block TLR4 to prevent lesion development
Anti-Angiogenic Molecules rescues tight junction defects and inhibits lesion development

MEKK3 inhibitor, Ponatinib, inhibits lesion formation in Ccm1 mice

Choi et al, 2018